GROUP

Jitendra Kumar Department of Mathematics Govt. Degree College Bhojpur Moradabad

Binary Operation

Let G be a set. A binary operation on G is a function that assigns each order pair of elements of G an element of G .
 $f: G \times G \rightarrow G$ Let G be a set. A binary operation on G is a
function that assigns each order pair of elements of G
an element of G .
 $f: G \times G \rightarrow G$
Remark : o is a binary operation on G iff a0b \mathfrak{S} G .

Algebraic Structure

- \Box A non empty set together with one or more than one binary operation is called algebraic structure. Examples :
- 1. (R, +, ⋅) is an algebraic structure.
- 2. $(N, +)$, $(Z, +)$, $(Q, +)$ are algebraic structures.

Group

A non empty set G together with an operation o is called a group if the following conditions are satisfied :

• Closure axiom,

 $\forall a,b \in G \Rightarrow aob \in G.$

• Associative axiom,

aob oc = ao(boc) \forall a,b,c \in G

• Existence of identity,

 \exists an element $e \in G$, called identity $aoe = eoa = a \forall a \in G$.

• Existence of inverse,

 $a \in G$, $\exists a^{-1} \in G$ s.t a^{-1} $oa = aoa^{-1} = e$ This a^{-1} is called inverse of a .

Abelian Group
Asreus Ceis selled abelian sreus ex semm

A group G, o is called abelian group or commutative group if $aob = boa \forall a,b \in G$.

Examples:

- 1. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ all are commutative group.
- 2. (Q_0, \cdot) , (\mathbb{R}_0, \cdot) are commutative group.

The set of all $m \times n$ matrics (real and complex) with matrix addition as a binary operation is commutative group. The zero matric is the identity element and the inverse of matric of A is $-A$.

Theorem :Uniqueness of identity

The identity e in a group always unique. Proof If possible, suppose that e and e' are two identity elements in a group G .

 e is an identity element

$$
\Rightarrow ee' = e'e = e' \ ae = ea = a
$$

 e' is an identity element

$$
\Rightarrow ee' = e'e = e [ae' = e'a = a]
$$

these statements prove that $e = ee' = e'e = e'$ from which, we get $e = e'$.

Theorem :The cancellation laws

Suppose, a,b,c are arbitrary elements of a group G. Then $ab = ac \Rightarrow b = c$ (left cancellation) $ba = ca \Rightarrow b = c$ (right cancellation) Proof: Let e be the identity element in a group G . Let $a,b,c \in G$ be arbitrary $ab = ac$ \Rightarrow a^{-1} ab = $a^{-1}(ac)$ \Rightarrow a^{-1} a b = a^{-1} a c [by associative law] $\Rightarrow eb=ec$ $\Rightarrow b = c$

Again
$$
ba = ca
$$

\n $\Rightarrow ba a - 1 = ca a - 1$
\n $\Rightarrow ba a - 1 = c a a - 1$
\n $\Rightarrow be = ce$
\n $\Rightarrow b = c$
\n**Example :**
\n1. The positive integer form a cancellative semigroup under addition.
\n2. The non-negative integers form a cancellative monoid under addition.
\n3. The cross product of two vectors does not obey the cancellation law.
\nif $a \times b = a \times c$,

Example :

1. The positive integer form a cancellative semigroup under addition.

3. The cross product of two vectors does not obey the cancellation law. if $a \times b = a \times c$,

then it does not follow that $b = c$ even if $a \ne 0$.

4. Matrix multiplication also does not necessary obey the cancellation law.

 $AB = BC$ and $A \ne 0$

Consider the set of all 2×2 matrices with integer coefficients. The matrix multiplication is defined by

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}
$$

It is associative, and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is identity but the cancellation law does not follow

$$
\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}
$$
 and
$$
\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 \ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}
$$

This implies
$$
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}
$$

$$
but\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}
$$

Theorem :Uniqueness of inverse

The inverse of each element of a group is unique. Proof :

If possible, let a and b be two elements of a group G , so that

$$
ba = ab = e
$$
...(1)

$$
ca = ac = e
$$
...(2)

 e be an identity in G .

$$
ba = e = ca
$$

or $ba = ca$
 $b = c$ [by right cancellation law.]

Theorem: If let G be a group and $a \in G$ then $(a^{-1})^{-1} = a$.

Proof: let a^{-1} be the inverse of an element a of a group G , then

$$
a^{-1}a = e
$$
 (1)

Then to prove that the inverse of a^{-1} is a, premultiplying (1) by $(a^{-1})^{-1}$,

$$
[(a^{-1})^{-1}a^{-1}] a = (a^{-1})^{-1}e
$$
, by associative law

$$
ea = (a^{-1})^{-1}
$$

$$
a = (a^{-1})^{-1}
$$

