GROUP

Jitendra Kumar Department of Mathematics Govt. Degree College Bhojpur Moradabad

Binary Operation

Let G be a set. A binary operation on G is a function that assigns each order pair of elements of G an element of G.

 $f:G\times G\to G$

Remark : o is a binary operation on G iff aOb \in G.

Algebraic Structure

 A non empty set together with one or more than one binary operation is called algebraic structure.

Examples :

- 1. $(R,+,\cdot)$ is an algebraic structure.
- 2. (N, +), (Z, +), (Q, +) are algebraic structures.

Group

A non empty set G together with an operation o is called a group if the following conditions are satisfied :

• Closure axiom,

 $\forall a,b \in G \Rightarrow aob \in G.$

Associative axiom,

 $aob \ oc = ao(boc) \ \forall \ a,b,c \in G$

• Existence of identity,

 \exists an element $e \in G$, called identity $aoe = eoa = a \forall a \in G$.

• Existence of inverse,

 $a \in G$, $\exists a^{-1} \in G \ s.t \ a^{-1} \ oa = aoa^{-1} = e$ This a^{-1} is called inverse of a.

Abelian Group

A group G,o is called abelian group or commutative group if $aob = boa \forall a, b \in G$.

Examples :

- 1. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ all are commutative group.
- 2. (Q_0, \cdot) , (\mathbb{R}_0, \cdot) are commutative group.

The set of all $m \times n$ matrics (real and complex) with matrix addition as a binary operation is commutative group. The zero matric is the identity element and the inverse of matric of A is -A.

Theorem : Uniqueness of identity

The identity e in a group always unique. Proof If possible, suppose that e and e' are two identity elements in a group G.

e is an identity element

$$\Rightarrow ee' = e'e = e' ae = ea = a$$

e' is an identity element

$$\Rightarrow ee' = e'e = e [ae' = e'a = a]$$

these statements prove that e = ee' = e'e = e'from which, we get e = e'.

Theorem : The cancellation laws

Suppose, *a*,*b*,*c* are arbitrary elements of a group *G*. Then $ab = ac \Rightarrow b = c$ (left cancellation) $ba = ca \Rightarrow b = c$ (right cancellation) **Proof**: Let e be the identity element in a group G. Let $a,b,c \in G$ be arbitrary ab = ac $\Rightarrow a^{-1} ab = a^{-1}(ac)$ $\Rightarrow a^{-1} a b = a^{-1} a c$ [by associative law] $\Rightarrow eb = ec$ $\Rightarrow b = c$

Again
$$ba = ca$$

 $\Rightarrow ba a - 1 = ca a - 1$
 $\Rightarrow b aa - 1 = c aa - 1$
 $\Rightarrow be = ce$
 $\Rightarrow be = ce$

Example :

1. The positive integer form a cancellative semigroup under addition.

2. The non-negative integers form a cancellative monoid under addition.

3. The cross product of two vectors does not obey the cancellation law. if $a \times b = a \times c$,

then it does not follow that b = c even if $a \neq 0$.

4. Matrix multiplication also does not necessary obey the cancellation law.

 $AB = BC and A \neq 0$

Consider the set of all 2 × 2 matrices with integer coefficients. The matrix multiplication is defined by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}$$

It is associative, and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is identity but the cancellation law does not follow

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{and}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

This implies
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}$$

$$\mathsf{but}\begin{pmatrix} 0 & 2\\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 3\\ 0 & 0 \end{pmatrix}$$

Theorem : Uniqueness of inverse

The inverse of each element of a group is unique. **Proof :**

If possible, let a and b be two elements of a group G, so that

$$ba = ab = e$$
 ...(1)
 $ca = ac = e$...(2)

e be an identity in *G*.

$$ba = e = ca$$

or $ba = ca$
 $b = c$ [by right cancellation law.]

Theorem: If let G be a group and $a \in G$ then $(a^{-1})^{-1} = a$.

Proof: let a^{-1} be the inverse of an element a of a group G, then

$$a^{-1}a = e$$
(1)

Then to prove that the inverse of a^{-1} is a, premultiplying (1) by $(a^{-1})^{-1}$,

$$[(a^{-1})^{-1}a^{-1}] a = (a^{-1})^{-1}e$$
, by associative law
 $ea = (a^{-1})^{-1}$
 $a = (a^{-1})^{-1}$

THANKS IHAMAZ